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Main Tasks

• Develop a thermodynamic model to gauge heat leak into a 
cryogenic capable pressure vessel

• Determine which mode of heat transfer is responsible for heat 
leak

• Create pressure vessel designs with minimal surface to volume 
ratios

• Perform finite element stress analyses on pressure vessel 
designs
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Motivation: US 2005 Carbon Dioxide Emissions

• 84% of total US greenhouse gas emissions came from carbon 
dioxide emissions

• 33% of U.S. energy-related carbon dioxide emissions in‘05 came 
from Transportation sector 

• US 2005 Emissions:    Carbon dioxide       Carbon
(Million Metric Tons) 6,008.6               1,638.7

• Transportation Sector:                      Carbon dioxide      Carbon
(Million Metric Tons) 1,958.6  534.2

Source: http://www.eia.doe.gov/oiaf/1605/archive/gg06rpt/summary/carbon.html
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Motivation: Boulders or Pebbles in the River?

•Climate change is a runaway train

• It is all our fault 

• There is not much we can do 
about

•Carbon dioxide forms approximately 
0.04% of  the Earth atmosphere

• Our impact on the environment is 
negligible  

• We don’t  need to worry about 
climate change
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Motivation: Boulders or Pebbles in the River?

•Climate change is naturally occurring 
process  

•However, human activities do contribute 
to climate change

•Climate change is manageable

•Must provide tools and technologies to 
address this issue 

•Hydrogen powered vehicles are one option
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Background: H2 Storage Options

• There are four automotive H2
storage technologies: 

• compressed gas, 
• metal hydride materials, 
• carbon-based materials, and 
• cryogenic liquid.

• Each technology has its 
limitation: weight, volume, 
evaporation losses, or adsorption 
thermodynamics
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Background: BMW Prior H2 Storage Research

• 7 generations of prototyped LH2
cars.

• Current design:
• Stores 8 kg of LH2

• Maximum operating pressure of 
87 psi

• ~17 hours of thermal dormancy 

Source: http://www.wired.com/cars/energy/news/2006/11/72100?currentPage=1
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Background: LLNL’s Recent H2 Storage Research

• LLNL’s 151 liter cryogenic 
capable pressure vessel (CCPV) 
can store 
• LH2, 
• compressed gaseous H2,
• compressed gaseous H2 at 

80K.

• CCPV Advantages: long range, 
compact, elimination of LH2
evaporation, and flexible 
refueling options.

Cryogenic capable pressure vessel

5000 psi maximum operating pressure
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Methodology: Cryogenic Dormancy Test 

• LN2 as a surrogate for LH2 
during cryogenic dormancy test 

• Created thermodynamic model 
of the CCPV using experiment 
data equations, REFPROP, and 
the Debye model

• Model estimates the both 
radiation and conduction heat 
transfer

Cryogenic dormancy test setup
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Cryogenic Dormancy Experiment Results & Eqs.
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Thermodynamic Model: Heat leak equations

• The change in temperature of the CCPV was derived in terms 
of radiation (Qr), conduction (Qc), and thermal mass.

• Heat added equations:

• Thermal mass equation:

• Change in temperature:

Radiation Qr( )=
εσA T 4

outside −T 4
CCPV t( )( )[ ]

1+ insulationlayers[ ] Conduction Qc( )=
kA Toutside −TCCPV (t)( )[ ]

Δx

Thermalmass = mAlCvAl t( )+ mCarbonCvCarbon t( )+ mLN2
CvLN2

t( )[ ]

Temperature(ΔT) =
Qr + 2Qc( )

mAlCvAl t( )+ mCarbonCvCarbon t( )+ mLN2
CvLN2

t( )[ ]

Heat conducts through both the liquid and gas fill pipe  
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Thermodynamic Model: Flow Chart
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Thermodynamic Model: Flow Chart Continued

•It was unknown whether the 151 L CCPV was filled with 13 
kg or 13.7 kg of  LN2

•A correlation between the thermocouple, pressure gauge, 
and PVT diagram was preformed to determine LN2 amount 
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Correlation of thermocouple readings to determine amount of Nitrogen 
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Correlation of pressure readings to determine amount of Nitrogen
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Results: Simulated vessel temperature comparison
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Model heat leak results
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Thermodynamic Analysis Results Summary 

• The temperature generated from the simulation are 
comparable to the experimental data.

• Radiation is responsible for ~90% of the heat transfer in to 
the CCPV.

• The average amount of heat transferred into the CCPV during 
the dormancy test was 5.5 Watts.

• Safely able to store 10.7 of LH2 for 11 days before venting 
given current heat transfer rate
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Implications of Model: Hydrogen Driving Record

• A 653 mile range was obtained 
using the LH2 fueled Toyota 
Prius in January 2007. 

• Currently, conformable 
cryogenic capable pressure 
vessel designs are being 
modeled and tested. 

• Can CCPV be redesigned to 
have smaller S/V ratio and 
store 6 kg of LH2 ?
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Feasibility of Pressure Vessel Designs

• A sphere has the smallest surface to volume ratio of any shape

• Isoperimetric quotient = 36 π V2 / S3 (based on a sphere)

• Volumetric quotient = S3 /36 π V2 (based on a sphere) 

• A Kelvin Cell has a .0757 isoperimetric quotient and a 0.683 
volumetric quotient

• A double bubble uses the least area to enclose two equal 
volumes

• Radiation is a function of emissivity (ε), Stefan-Boltz constant 
(σ ), area (A), and temperature difference (ΔT).  
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FEA Cryogenic Capable Pressure Vessel Designs

SphereDouble BubbleKelvin Cell

•Aluminum 2024

•Thickness of  .25 
inches

•Volume: 2587.3 in3 

or 42.4 L

•S/V ratio: .35

•Aluminum 2024

•Thickness of  .25 
inches

•Volume: 2587.3 in3 

or 42.4 L

•S/V ratio: .67

•Aluminum 2024

•Thickness of  .25 
inches

•Volume: 2587.3 in3 

or 42.4 L

•S/V ratio: .37



Slide 23

Pressure Design Results with Carbon Fiber Layer

SphereDouble Bubble
Kelvin Cell

•Pressure: 5000 psi

•Aluminum 2024

•Thickness of  .25
inches

•5 layers of  Toray 
T700 Carbon fiber

•T700 layup of  45, 
-45, 0, -45, 45 deg.

•ANSYS Solid 45 
& 46 Element 
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FEA Pressure Vessel Results Summary

• The Kelvin Cell design has excellent packing characteristics, but 
it fails at high pressures 

• The Kelvin Cell design experienced the most stress and 
displacement at 5000 psi

• Stainless steel 304 could increase the Kelvin Cell design 
resistance to failure
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FEA Pressure Vessel Results Summary Continued

• The spherical design experienced the least 
stress of all the designs with or without 
carbon fiber

• At 5000 psi, the carbon fiber wrapped 
spherical vessel design’s Von Mises stress 
was 28.394% less than the double bubble

• Feasible to create a modular cubic 
cryogenic capable pressure (MC3PV)

• MC3PV would have a spherical inner 
vessel and a cubic vacuum outer jacket. 

Modular Cubic Cryogenic Capable Pressure Vessel
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Summary of work completed

• Created thermodynamic model of CCPV

• Estimated ~90% of heat transfer due to radiation and 5.5 
Watts transferred over 7 days

• Develop FEA models of pressure vessel designs

• Determined feasibility of creating a pressure vessel with cubic 
outer jacket and spherical inner vessel
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Future Plans

• Further refine model to better account for
• specific heat capacity of AL at cryogenic temperatures
• phase change of LN2  and LH2

• Redesign CCPV to store 6 kg of LH2 and be mounted underneath 
Toyota Prius

• Construct cubic outer jackets and test connection between pressure 
vessels 

• Create a econometric model to determine users willingness to adopt 
a cubic cryogenic capable pressure vessel
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Q/A?
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Supplementary Slides
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Introduction: Why Hydrogen? 

• Hydrogen, like electricity, is an energy carrier; it is not an energy 
source.

• 19.6  lbs -- amount of carbon dioxide emitted from burning 1 gallon 
of gasoline in a car

• 1 kg of hydrogen has the same energy content of 1 gallon of 
gasoline.

• Heat and water -- the emissions from burning 1 kg of hydrogen in a 
car

• Hydrogen issues: production, distribution, and storage 
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Carbon Fiber Layup



Slide 33

Rule of Mixtures Model

• Ec11 = Ef11*Vf+Ee11*Ve   

• NUc12 = NUf12*Vf+NUe12*Ve    

• Ec22 = 1/((Vf/Ef22)+(Ve/Ee22)) 

• Gc12 = 1/((Vf/Ge12)+(Ve/Ge12))
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Halpin-Tsai Model

• Ec11 = Ef11*Vf+Ee11*Ve        

• NUc12 = NUf12*Vf+NUe12*Ve 

• Gc12 = Ge12*(1+EPS_G12*ETA_G12*Vf)/(1-ETA_G12*Vf)

• Ec22 = Ee22*(1+EPS_E22*ETA_E22*Vf)/(1-ETA_E22*Vf)

• Gc23 = Ge23*(1+EPS_G23*ETA_G23*Vf)/(1-ETA_G23*Vf)
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Concentric Cylinder Model

• Ec11 = Ef11*Vf+Ee11*Ve+TT1

• NUc12 = NUf12*Vf+NUe12*Ve+TT2

• Gc12 = Ge12*(Gf12*(1+Vf)+Ge12*(1-Vf))/((Ge12*(1-
Vf))+Ge12*(1+Vf))

• Gc23 = Ge23*(1+(1+B1)*Vf/(P 
Vf*(1+3*(B1^2)*(Ve^2)/(A*(Vf^3)+1))))

• Ec22 = 4/(1/Gc23+1/Kc23+4*(NUc12^2)/Ec11)

• NUc23 = Ec22/(2*Gc23)-1
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Cryogenic hydrogen vessel dormancy is best analyzed in terms of  internal energy and 
fuel density with pressure, entropy, and temperature contours

Watt
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A conventional tank with 8 kg LH2 has 8 Watt-days of  dormancy
(warming from 20 K to 28 K and venting at 6 bar)

A conventional tank with 8 kg LH2 warms to 28 K 
after absorbing 8 Watt-days of heat (blue) and vents

Watt
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An insulated 5000 psi vessel has 56 Watt-days of  thermal endurance

(warming from 20 K to 95 K).

A 5000 psi vessel can absorb an additional 48 Watt-days 
of heat (green) by warming to 90 K before ventingA conventional tank with 8 kg LH2 warms to 28 K 

after absorbing 8 Watt-days of heat (blue) and vents

Watt
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Consuming 2 kg H2 (driving ~150 mi) cools the remaining 6 kg H2 to 70 
K, 2000 psi, regaining ~50 Watt-days of  thermal endurance

50

Driving ~150 miles consumes 2 kg H2, isentropically 
cooling the remaining 6 kg of H2 to 70 K, almost 

doubling the thermal endurance (red)

A 5000 psi vessel can absorb an additional 48 Watt-days 
of heat (green) by warming to >90 K before venting

A conventional tank with 8 kg LH2 warms to 28 K 
after absorbing 8 Watt-days of heat (blue) and vents

Watt
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